Energy Use of Some Typical Home Appliances

If you want a general estimate of how much electricity your home appliances consume, you can refer to the list below, which provides the energy consumption (Wattage) of some typical home appliances. If you have appliances that are not listed in the table, or desire a more exact figure based on a specific appliance in your home, use the following formula to estimate the amount of energy a specific appliance consumes:

Wattage x Hours Used per Day 1000

= Daily Kilowatt-hour (kWh) consumption

Note: 1 kilowatt (kW) = 1,000 Watts

Multiply this by the number of days you use the appliance during the year for the annual consumption. You can then calculate the annual cost to run an appliance by multiplying the kWh per year by your local utility's rate per kWh consumed.

For examples:

Window fan:

200 Watts x 4 hours/day x 120 days/year

1000

- = 96 kWh x 8.5 Cents/kWh
- = \$8.16 /year

Personal Computer and Monitor:

(120+150) Watts x 4 hours/day x 365 days/year

1000

- = 394 kWh x 8.5 Cents/kWh
- = \$33.51/year

You can usually find the wattage of most appliances stamped on the bottom or back of the appliance, or on its "nameplate." The wattage listed is the maximum power drawn by the appliance. Since many appliances have a range of settings (for example, the volume on a radio), the actual amount of power consumed depends on the setting used at any one time.

Here are some examples of the range of nameplate wattages for various household appliances:

```
Aquarium = 50-1210 Watts
Clock radio = 10
Coffee maker = 900-1200
Clothes washer = 350-500
Clothes dryer = 1800-5000
Dishwasher = 1200-2400 (using the drying feature greatly increases energy
consumption)
Dehumidifier = 785
Electric blanket- Single/Double = 60 / 100
 Ceiling = 65-175
 Window = 55-250
 Furnace = 750
 Whole house = 240-750
Hair dryer = 1200-1875
Heater (portable) = 750-1500
Clothes Iron = 1000-1800
Microwave oven = 750-1100
Personal Computer
 CPU - awake / asleep = 120 / 30 or less
 Monitor - awake / asleep = 150 / 30 or less
 Laptop = 50
Radio (stereo) = 70-400
Refrigerator (frost-free, 16 cubic feet) = 725
Televisions (colour)
 19" = 65-110
 27" = 113
 36" = 133
 53"-61" Projection = 170
 Flat Screen = 120
Toaster = 800-1400
Toaster Oven = 1225
VCR/DVD = 17-21/20-25
Vacuum cleaner = 1000-1440
Water heater (40 \text{ gallon}) = 4500-5500
Water pump (deep well) = 250-1100
Water bed (w/ heater, no cover) = 120-380
```

Refrigerators, although turned "on" all the time, actually cycle on and off at a rate that depends on a number of factors. These factors include how well it is insulated, room temperature, freezer temperature, how often the door is opened, if the coils are clean, if it is defrosted regularly, and the condition of the door seals.

To get an approximate figure for the number of hours that a refrigerator actually operates at its maximum wattage, divide the total time the refrigerator is plugged in by three.

If the wattage is not listed on the appliance, you can still estimate it by finding the current draw (in amperes) and multiplying that by the voltage used by the appliance.

The amperes might be stamped on the unit in place of the wattage.

If not, find a clamp-on ammeter—an electrician's tool that clamps around one of the two wires on the appliance—to measure the current flowing through it.

You can obtain this type of ammeter in stores that sell electrical and electronic equipment. Take a reading while the device is running; this is the actual amount of current being used at that instant.

Note: When measuring the current drawn by a *motor*, in the first second that the motor starts, the meter will show about three times the current than when it is running smoothly.

Also note that many appliances continue to draw a small amount of power when they are switched "off."

These "phantom loads" occur in most appliances that use electricity, such as VCRs, televisions, stereos, computers, and kitchen appliances.

Most phantom loads will increase the appliance's energy consumption a few watts per hour.

These loads can be avoided by unplugging the appliance or using a power strip and using the switch on the power strip to cut all power to the appliance.